
 
 Pure Photonics Confidential 

Application note PPEB076 March 2024 v2 Page 1 of 16 

 
PPEB076 Operating Guide 
 

Application note: ICR operating board 

 

 

The PPEB076 is developed to work with the Neophotonics ICR / micro-ICR and the 

Neophotonics daughterboard. It provides a serial programming interface to control the 

ICR from within automated test setups. 

Included features: 

• Individual power supply for each TIA with enable/disable, including current 

measurement. 

• Read out of current on each photo-diode (9) 

• Auto-ranging or manual ranging of the photo-current detection 

• Built-in VOA control 



 
 Pure Photonics Confidential 

Application note PPEB076 March 2024 v2 Page 2 of 16 

1. Contents 
2. Installation procedure for PPEB076 .......................................................................... 3 

3. Electrical Connectors ................................................................................................ 6 

4. Communications Port ............................................................................................... 7 

5. Communications Protocol ......................................................................................... 8 

6. Registers ................................................................................................................ 10 

Register 0x9A – PD resistance .................................................................................. 11 

7. Command Line Interface ........................................................................................ 12 

8. Execfile code .......................................................................................................... 13 

9. Firmware Upgrade .................................................................................................. 16 

 

 

 

  



 
 Pure Photonics Confidential 

Application note PPEB076 March 2024 v2 Page 3 of 16 

2. Installation procedure for PPEB076 
The original Neophotonics daughterboard is shown below (micro-ICR).  

• Remove the 4 hex screws on the top of the board and keep them 

 

• Replace them with the 1.5 inch long hex standoffs

 
• Remove the pyrex holder for the (micro-ICR) 



 
 Pure Photonics Confidential 

Application note PPEB076 March 2024 v2 Page 4 of 16 

 

• Install the (micro-)ICR 

\ 

 

• Install the PPEB076 board on the stand-offs and use the 4 hex screws that were 

removed in the first step 



 
 Pure Photonics Confidential 

Application note PPEB076 March 2024 v2 Page 5 of 16 

 
• Install the ribbon cable, USB connector (needs to be done before the power plug 

is inserted) and the power plug 

 



 
 Pure Photonics Confidential 

Application note PPEB076 March 2024 v2 Page 6 of 16 

3. Electrical Connectors 
The board has 2 IDC connectors 

• 40 pin connector to connect to ICR. In the below image, this is the connector on 

the left. Pin 1 is on the top of the board closest to the observer (pin 39 is at the top 

of the board, closest to the Pure Photonics logo) 

o  
• 20 pin connector to connect to customer system (operation possible without using 

this). In the image below this connector is on the right. Pin 1 is on top of the board 

furthest from the observer (pin 19 is on the top of the board, next to the barrel 

plug). 

o  

In addition, there is a barrel plug power supply (make sure that either the pins on the 

20 pin connector are connected or this barrel plug. Never connect two power 

supplies) with input voltage requirement 10-25V. Typical power consumption is less than 

2W. 

And there is a micro-USB communications port. 

 

 



 
 Pure Photonics Confidential 

Application note PPEB076 March 2024 v2 Page 7 of 16 

4. Communications Port 
The ICR communications goes over the micro-USB interface. When connected to a 

computer the interface will install as a serial port (FTDI VCP – Virtual COM Port - driver 

required, if not already installed on computer).  

The USB interface can be alternatively controlled through the pins on the input connector 

or can be overruled completely by a LVTTL RS-232 interface through the input connector. 

In either case, care needs to be taken that only 1 interface is connected at any time, to 

prevent contention. 

The standard USB interface is not optimized for serial communications on the RS-232 

interface. Due to differences in protocol and optimization algorithms for the USB port, it 

installs with non-optimal settings. For most operations, this is not a problem, however for 

a firmware upgrade a proper configuration is required. 

We recommend to make the below changes when the USB interface gets registered. On 

every computer this is only needed once for each USB interface/device. 

a. Open the ‘Windows Control Manager’ 

b. Open ‘Hardware and Sound’ 

c. Open ‘Device Manager’ 

d. Find the COM ports 

e. Right-click the USB serial port and select ‘Properties’ 

f. Select the tab ‘Port Settings’ and click the ‘Advanced’ button 

g. Set the latency timer value to 1msec.  

a. You can also select the COM-port designation here (we recommend port # 

<10).  

b. We recommend to set the ‘USB transfer sizes’ to the lowest possible setting 

(do this for both receive and transmit) 

h. Close the windows and start using the device   

 



 
 Pure Photonics Confidential 

Application note PPEB076 March 2024 v2 Page 8 of 16 

5.  Communications Protocol 
The communication with the device follows the definition from the OIF MSA for tunable 

lasers. Basically 4 bytes are sent per command and 4 bytes are returned (a strict 

handshake model).  

The OIF document can be found at https://www.oiforum.com/wp-

content/uploads/2019/01/OIF-ITLA-MSA-01.3.pdf. 

The user to module command is defined as below (more details in MSA, section 8 and 

9): 

 

 

 

The module to user command is defined as below (more details in MSA, section 8 and 9) 

 

 

 

 



 
 Pure Photonics Confidential 

Application note PPEB076 March 2024 v2 Page 9 of 16 

Note the checksum in the first 4 bits of the first byte. The checksum is calculated as pe 

the OIF MSA protocol (for tunable lasers) and reproduced below.  

 



 
 Pure Photonics Confidential 

Application note PPEB076 March 2024 v2 Page 10 of 16 

6. Registers 
The following ‘tunable laser’ registers are available on the PPEB076 

• 0x01 DevType 

• 0x02 MFGR 

• 0x03 Model 

• 0x04 SerNo 

• 0x06  Release 

• 0x08 GenCfg 

• 0x09 AEA-EAC 

• 0x0A AEA-EA 

• 0x0B AEA-EAR 

• 0x0d IOCap 

• 0x0E EAC 

• 0x0F EA 

• 0x10 EAR 

• 0x13 LstResp 

• 0x14 DLConfig 

• 0x15 DLStatus 

• 0x33 MCB 

The following Registers are specific for the ICR Control 

• 0x80 Enable/Disable TIA 

• 0x81 Photo-diode mode (automatic/manual) 

• 0x82 Photo-diode reading 

• 0x83 ACG-MCG 

• 0x84 Output Adjust setting 

• 0x85 Gain Setting 

• 0x86 Shutdown 

• 0x87 Peak Voltage 

• 0x88 VOA Setting 

• 0x89  TIA current  

• 0x8D  Sets the target voltage over the photodiodes (mV) 

• 0x8E   Sets the hysteresis range for the photodiodes voltage (mV) 

• 0x9A PD Resistance 

The registers are described in more detail on the next page: 

 



 
 Pure Photonics Confidential 

Application note PPEB076 March 2024 v2 Page 11 of 16 

 

Register 0x9A – PD resistance 
The photo-diodes are reverse biased at about -5V. Between this voltage and the 

photodiode there is a variable resistor, reducing the bias voltage by a voltage equal to 

resistance x photo-current.  

In the automatic mode, the bias voltage is kept at a value between 4.3 and 4.7V to ensure 

strong reverse biasing. This is accomplished by adjusting the resistance value which can 

take values between 0 and 100 kOhm. A read on register 0x9A gives the value of the 

resistor as return value * 100kOhm / 256. 

In the manual mode, a write to register 0x9A can set the resistance value (at value * 

100kOhm / 256). This is not recommended but can be helpful where you want to monitor 

the power variation and need to ensure that the divider in the equation (the resistance) is 

stable. In such cases we recommend to first have the auto mode get to the correct 

resistance value and then switch to manual mode.   

Register 0x8D – target photodiode voltage 

The voltage over the photodiodes is controlled by a variable resistance. In the automatic 

mode the resistance is adjusted to control the voltage over the photodiodes to a specific 

range (see 0x8E) around a target. The voltage target is set and read in mV in register 

0x8D. It can be saved to permanent memory by the genCfg command. Note that the 

default target is 4V for class 20 devices. It is 3.3V for class 40 devices. 

Register 0x8E – target photodiode voltage range 
The range provides a hysteresis over which no additional action is taken to adjust the 

resistance values. The smaller this value, the more the resistance will be modified, which 

can result in additional noise.  

 

WRITE READ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TIA_Enable 0x80 TIA3 TIA2 TIA1 TIA0 0 =  Disable ; 1 =  Enable

PD_Mode 0x81 PD Yqp Yqn Yip Yin XQp XQn Xip Xin 0 =  Manual; 1= Auto

PD_Value 0x82

MGC_AGC 0x83 Y X 0 = MGC; 1 = AGC

Output_Adjust 0x84 0 - 255 for (0V - 3.3V)

Gain 0x85 0 - 255 for (0V - 3.3V)

Shutdown 0x86 Y X 0 = Disable; 1 = Enable

Peak_Value 0x87

VOA_Voltage 0x88 0.01V (0 - 5V)

TIA_Currrent 0x89 TIA 0-3

PD Resistance 0x9A PD 0-8; value 0-255 (underlying resistor 100k=256)

WRITE READ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TIA_Enable 0x80 TIA3 TIA2 TIA1 TIA0 TIA3 TIA2 TIA1 TIA0 0 =  Disable ; 1 =  Enable

PD_Mode 0x81 PD Yqp Yqn Yip Yin XQp XQn Xip Xin PD Yqp Yqn Yip Yin XQp XQn Xip Xin 0 =  Auto; 1 = Manual

PD_Value 0x82 microAmp

MGC_AGC 0x83 Y X Y X 0 = MGC; 1 = AGC

Output_Adjust 0x84 0 - 255 for (0V - 3.3V)

Gain 0x85 0 - 255 for (0V - 3.3V)

Shutdown 0x86 Y X Y X 0 = Disable; 1 = Enable

Peak_Value 0x87 mV (2.5V on input corresponds to 900mV pkpk out)

VOA_Voltage 0x88 0.01V (0 - 5V)

TIA_Currrent 0x89 0.01mA

PD Resistance 0x9A PD 0-8; value 0-255 (underlying resistor 100k=256)Value

Value

Don't care

Value required

CHANNEL Value Value

Value Value

Not writeable

ValueNot writeable

CHANNEL Value CHANNEL

SEND

Not writeable

Not writeable

RESPONSE

CHANNEL Value Value

Not writeable Value

Not writeable TIA#

CHANNEL Value CHANNEL

Value

CHANNEL

CHANNELCHANNEL Value

CHANNEL Value CHANNEL

CHANNEL



 
 Pure Photonics Confidential 

Application note PPEB076 March 2024 v2 Page 12 of 16 

7. Command Line Interface 
The CLI is available for download on the Pure Photonics webside (under support). This 

program allows for command line communication with the ICR evaluation board. A special 

script is made available to implement the specific ICR command 

For the older CLI version (v3.0.2) 

The specific commands for the ICR can be loaded by saving the ‘ICR.py’ file in the CLI 

directory and then running the command execfile(‘ICR.py’). The code for the file is in the 

next section. 

New CLI version (v3.2.0) 
The CLI commands can be enabled by it.SetICR(True). After that the ICR commands are 

available. The commands are included in the CLI help function and in the manual. 



 
 Pure Photonics Confidential 

Application note PPEB076 March 2024 v2 Page 13 of 16 

8. Execfile code 
readpacket=None 
writepacket=None 
connected=False 
 
def ICRConnect(port=1,baudrate=9600): 
    global readpacket,writepacket,connected 
    it.connect(port,baudrate) 
    it.mcb() 
    readpacket=it.toModulePacket() 
    it.mcb() 
    writepacket=it.toModulePacket() 
    writepacket.buffer('\x11\x81\x00\x00') 
    connected=True 
 
def ICRDisconnect(): 
    global connected 
    it.disconnect() 
    connected=False 
 
def ICRTIA(value=-1): 
    if not(connected): 
        print 'Not connected' 
        return 
    if value==-1: 
        readpacket.register(0x80) 
        test=it.packet(readpacket) 
        return test.data() 
    else: 
        writepacket.register(0x80) 
        writepacket.data(value&0x000f) 
        it.packet(writepacket) 
         
def ICRPDMode(value=-1): 
    if not(connected): 
        print 'Not connected' 
        return 
    if value==-1: 
        readpacket.register(0x81) 
        test=it.packet(readpacket) 
        return test.data() 
    else: 
        writepacket.register(0x81) 
        writepacket.data(value&0x01ff) 
        it.packet(writepacket) 
 



 
 Pure Photonics Confidential 

Application note PPEB076 March 2024 v2 Page 14 of 16 

def ICRPDValue(ch=0): 
    if not(connected): 
        print 'Not connected' 
        return     
    readpacket.register(0x82) 
    readpacket.data(ch&0x0f) 
    test=it.packet(readpacket) 
    return test.data() 
 
def ICRMGCAGC(value=-1): 
    if not(connected): 
        print 'Not connected' 
        return 
    if value==-1: 
        readpacket.register(0x83) 
        test=it.packet(readpacket) 
        return test.data() 
    else: 
        writepacket.register(0x83) 
        writepacket.data(value&0x0003) 
        it.packet(writepacket) 
 
def ICROutputAdjust(ch=0,volts=-1): 
    if not(connected): 
        print 'Not connected' 
        return 
    if volts==-1: 
        readpacket.register(0x84) 
        readpacket.data(ch*256*16) 
        test=it.packet(readpacket) 
        return test.data()*3.3/256 
    else: 
        if volts>3.3:volts=3.3 
        writepacket.register(0x84) 
        writepacket.data(ch*256*16+int(256*volts*1.0/3.3)) 
        it.packet(writepacket)    
 
def ICRGain(ch=0,volts=-1): 
    if not(connected): 
        print 'Not connected' 
        return 
    if volts==-1: 
        readpacket.register(0x85) 
        readpacket.data(256*16*ch) 
        test=it.packet(readpacket) 
        return test.data()*3.3/256 



 
 Pure Photonics Confidential 

Application note PPEB076 March 2024 v2 Page 15 of 16 

    else: 
        writepacket.register(0x85) 
        if volts>3.3:volts=3.3 
        writepacket.data(ch*256*16+int(256*volts*1.0/3.3)) 
        it.packet(writepacket) 
 
def ICRShutdown(value=-1): 
    if not(connected): 
        print 'Not connected' 
        return 
    if value==-1: 
        readpacket.register(0x86) 
        test=it.packet(readpacket) 
        return test.data() 
    else: 
        writepacket.register(0x86) 
        writepacket.data(value&0x03) 
        it.packet(writepacket) 
         
def ICRPeakV(ch=0): 
    if not(connected): 
        print 'Not connected' 
        return 
    readpacket.register(0x87) 
    readpacket.data(ch*256*16) 
    test=it.packet(readpacket) 
    return test.data() 
 
def ICRVOA(value=-1): 
    if not(connected): 
        print 'Not connected' 
        return 
    if value==-1: 
        readpacket.register(0x88) 
        test=it.packet(readpacket) 
        return test.data() 
    else: 
        writepacket.register(0x88) 
        writepacket.data(value) 
        it.packet(writepacket) 



 
 Pure Photonics Confidential 

Application note PPEB076 March 2024 v2 Page 16 of 16 

9. Firmware Upgrade 
The Command Line Interface is a tool to directly access the registers of the tunable laser. 

The CLI is available for download on the Pure Photonics website, under the download 

section. The zip file needs to be downloaded and extracted to a separate directory. In the 

directory there will be a .exe file to run the program. 

Note that the firmware is serial number specific. Please make sure you use the 

correct firmware. 

Use the following sequence to perform firmware upgrade: 

• it.connect(1,9600) 

o The first parameter is the COM port number. This may vary dependent on 

your configuration 

o The second parameter is the current baudrate of the device. Most devices 

start up with baudrate 9600 

• it.release() 

o make sure that you get a response here. If not, something is seriously wrong 

and more trouble shooting is required. Contact Pure Photonics. 

o If the response is FW 0.0.0, then the temporary firmware version is active, 

indicating that the previous firmware upgrade did not terminate as intended. 

• it.baudrate(115200) 

o 115200 is the highest available baudrate, resulting in the fastest upgrade 

• it.upgrade(‘application’,r’c:\.....\.....ray’) 

o The item within parenthesis is the path to the .ray file that you wish to upload 

After completion of the upgrade the interface will say: ‘Seconds elapsed  140. Init_Run 

OK’. 

It may be that the unit needs to be configured after upgrade. To do this, follow the 

following sequence in the CLI: 

• it.connect(x,9600) 

• it.channel(1) 

• test=it.toModulePacket() 

• test.register(0x5e) 

• test.data(1) 

• it.packet(test) 

 


